Online Generation of Association Rules under Multi-dimensional Consideration Based on Negative-Border
نویسندگان
چکیده
Recently, some researchers have developed incremental and online mining approaches to maintain association rules without having to re-process the entire database whenever the database is updated or user specified thresholds are changed. However, they usually can not flexibly obtain association rules or patterns from portions of data, consider problems with different aspects, or provide online decision support for users. We earlier developed an online mining approach for generation of association rules under multidimensional consideration. The multidimensional online mining approach may, however, get loose upper-bound support of candidate itemsets and thus cause excessive I/O and computation costs. In this paper, we attempt to apply the concept of a negative border to enlarge the mining information in the multidimensional pattern relation to help get tighter upper-bound, and thus reduce the number of candidate itemsets to consider. Based on the extended multidimensional pattern relation, a corresponding online mining approach called Negative-Border Online Mining (NOM) is proposed to efficiently and effectively utilize the information of negative itemset in the negative border. Experiments for heterogeneous datasets are also performed to show the effectiveness of the proposed approach.
منابع مشابه
A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملMining the Banking Customer Behavior Using Clustering and Association Rules Methods
The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily t...
متن کاملMultiagent Reinforcement Learning Using OLAP-Based Association Rules Mining
In this paper we propose a novel multiagent learning approach, which is based on online analytical processing (OLAP) data mining. First, we describe a data cube OLAP architecture which facilitates effective storage and processing of the state information reported by agents. This way, the action of the other agent, even not in the visual environment of the agent under consideration, can simply b...
متن کاملA New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 23 شماره
صفحات -
تاریخ انتشار 2007